FORENSIC SCIENCE M.S.

Degree: Master of Science
Program Director: Mark Profili
410-704-2668
mprofili@towson.edu

Mission Statement
The mission of the Master of Science in Forensic Science Program is to provide students with a comprehensive and in-depth study of major areas of forensic science that will allow them to compete for positions in forensic science beyond the entry level.

The program is based on an application-focused curriculum that provides the student an advanced educational background and the development of laboratory skills. The program’s mission is further enhanced through active forensic research, internships and collaborative learning experiences with accredited forensic laboratories.

Program Goals and Objectives
The goals and objectives of the Towson University Master of Science in Forensic Science Program is to prepare students for positions as working forensic scientists in business, industry and government careers. To meet these goals, the program combines chemistry, biology and specialized forensic science course work to provide students with advanced scientific and laboratory training in major areas of forensic science including crime scene analysis, forensic DNA analysis and trace evidence/toxicology analysis.

General Information
The Master of Science in Forensic Science program is a FEPAC-accredited Professional Science Master’s Program that is primarily molecular biology/biochemistry-based, focusing on forensic DNA analysis, or chemistry-based, focusing on toxicology, drug and trace evidence analysis. This program has the support of and benefits from a wide variety of talented faculty members from the department of Chemistry as well as forensic professionals serving as adjunct faculty. The program is rich with laboratory experience, capped with a research project, internship in a forensic laboratory or a thesis.

The program provides advanced education in the scientific and laboratory problem-solving skills necessary for success in a modern forensic laboratory. The program combines this rigorous training with exposure to the breadth of forensic science disciplines, including forensic science practice, law and ethics. The program is intended for students who are interested in working as forensic scientists in the field. The flexible degree program is also designed to meet the professional development needs of forensic scientists now employed in Maryland and the mid-Atlantic region. It is currently one of a very few FEPAC-accredited, Professional Science Master’s Programs in forensic science in the United States.

The curriculum ensures that each student:

- Develops an understanding of the areas of knowledge that are essential to forensic science, including crime scene investigation, physical evidence concepts, law/science interface, ethics and professional responsibilities, quality assurance, analytical chemistry and instrumental methods of analysis, microscopy, molecular biology, toxicology, forensic biology, DNA technologies and biostatistics
- Acquires skills and experiences in the application of basic forensic science concepts, analytical chemistry and forensic DNA knowledge to problem solving
- Is oriented in professional values, concepts and ethics
- Demonstrates integration of knowledge and skills through a capstone experience, such as a seminar, a research project, an internship or thesis

Qualifications for a career and/or internship in forensic science
Prospective students should be aware that background checks, driving records, drug tests, polygraph, and medical or physical examinations similar to those required of law enforcement officers are likely to be a condition of employment and/or internships. Please refer to: NIJ Report NCJ 203099, pp. 7-10 for additional information.

Admission Requirements
- A B.S./B.A. in biological sciences, chemistry or forensic chemistry from a regionally accredited college or university is required for full admission. Students with a B.S./B.A. in a natural science with two terms in general chemistry, organic chemistry and general physics, and at least one term in general biology, analytical chemistry, statistics, biochemistry, molecular biology and genetics can be considered for admission.
- A GPA of 3.00 in previous science course work and an overall GPA of 3.00 are required for full admission. All GPA calculations for admissions are based upon the last 60 units of undergraduate and post-baccalaureate study. Students having a GPA of 2.75-2.99 may be given conditional admission. Full admission will be granted after students achieve a GPA of 3.00 in their first 9 graduate units taken at Towson University.

- Graduate application, application fee and official transcripts
- Non-immigrant international students: See additional admission information in Graduate Admissions (https://www.towson.edu/academics/graduate/admissions/apply/international.html)
- **See Exceptions to Policy in Graduate Admissions (https://www.towson.edu/academics/graduate/admissions/apply/policies.html)

Application Deadline
This program admits students for the fall and spring terms only.

Priority will be given to students whose application and transcripts have been received by March 30 for fall admission and October 31 for spring admission.

Students who miss the priority deadline may contact the program director via email at mprofili@towson.edu to inquire if space is still available for the forthcoming term.

Degree Requirements
All students complete 37 units of graduate work. No more than three courses may be taken at the 500 level. In addition to the required courses listed below, all students must select 3 elective courses with at least two electives courses from an approved list. To fulfill the capstone requirement students must choose either the Thesis option (6 units) or an Internship (0-3 units) and/or a Research Project (0-6 units). Students wishing to pursue a forensic chemistry rich program that is centered in toxicology, drug and trace analysis may do so with the consent of the program director. This will require substitution of some of the
required biology based courses with elective chemistry based courses. The number of courses and credit units will not be affected by these substitutions.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRSC 600</td>
<td>FORENSIC SCIENCE AND LAW</td>
<td>3</td>
</tr>
<tr>
<td>FRSC 601</td>
<td>FORENSIC MOLECULAR BIOCHEMISTRY</td>
<td>3</td>
</tr>
<tr>
<td>FRSC 602</td>
<td>FORENSIC CHEMISTRY</td>
<td>3</td>
</tr>
<tr>
<td>FRSC 610</td>
<td>FORENSIC SEROLOGY</td>
<td>3</td>
</tr>
<tr>
<td>FRSC 620</td>
<td>DNA TECHNOLOGIES</td>
<td>3</td>
</tr>
<tr>
<td>FRSC 621</td>
<td>ADVANCED DNA TECHNOLOGIES</td>
<td>3</td>
</tr>
<tr>
<td>FRSC 797</td>
<td>GRADUATE SEMINAR FOR FORENSIC SCIENCE</td>
<td>1</td>
</tr>
</tbody>
</table>

Capstone Courses

Select the following:

- FRSC 787 GRADUATE INTERNSHIP IN FORENSIC SCIENCE
- FRSC 880 RESEARCH PROJECT IN FORENSIC SCIENCE
- FRSC 897 FRSC THESIS

Total Units: 37

1. Students may choose to take FRSC 787 and/or FRSC 880 or FRSC 897.

Courses

FRSC 600 FORENSIC SCIENCE AND LAW (3)

Study of the judicial response and requirements to uses of forensic science analysis of physical evidence in the investigation, prosecution, and defense of a crime with an emphasis on legal casework associated with rules of admissibility of evidence. A practicum involving mock trial courtroom testimony is essential part of the course. Professional ethics related to forensic science and courtroom testimony is a main component of this course.

FRSC 601 FORENSIC MOLECULAR BIOCHEMISTRY (3)

Overview of the principles of molecular biology and genetics as it applies to Forensic Science including; DNA metabolism, recombination and mapping, repeat of DNA sequences, statistics and significance of variation, Polymerase Chain Reaction, human identification through DNA technologies, population genetics, relationship analyses and databasing.

FRSC 602 FORENSIC CHEMISTRY (3)

Introduction to chemical and physical analyses used by a modern crime laboratory in the evaluation of physical evidence encountered in criminal acts. Areas of concentration will include drug analysis, toxicology, explosives analysis, arson examination, firearms and tool marks, latent prints and trace evidence. Emphasis will be placed on the value of such examinations as presented by the expert witness in criminal trial. Four hours of lecture/laboratory per week. Lab/Class fee will be assessed.

FRSC 610 FORENSIC SEROLOGY (3)

Instruction and laboratory practice in identifying body fluids and body fluid stains using various biochemical, instrumental, microscopic and electrophoretic methods to determine their possible origin and species prior for forensic DNA analysis. Blood spatter pattern recognition will be described and used in determining the most probative samples for study at the crime scene and on evidence samples to undergo analysis. Core course to be taken first year in program. Intended for MSFS students only. Four lecture/lab hours per week. Prerequisites: FRSC 601 and department consent. Lab/Class fee will be assessed.

FRSC 620 DNA TECHNOLOGIES (3)

Instruction and laboratory practice in identifying body fluids and body fluid stains as to their source using state of the art DNA technology. Methods include extraction of DNA from forensic biological samples, quantification of the extracted DNA, molecular amplification of the extracted DNA and visualization of short segments known as short tandem repeats or str’s. Four lecture/lab hours per week. Prerequisite: FRSC 601 and department consent. Lab/Class fee will be assessed.

FRSC 621 ADVANCED DNA TECHNOLOGIES (3)

Instruction and laboratory practice in identifying body fluid stains as to their source using current state of the art DNA technology. Instrumental methods of analysis will be emphasized; interpretation of DNA data using appropriate software and the statistical analysis; report writing and oral presentations in a mock trial. Four lecture/laboratory hours per week. Prerequisite: FRSC 620. Lab/Class fee will be assessed.

FRSC 640 CHEMISTRY OF DANGEROUS DRUGS (3)

A study of the chemistry, methods of detection and analysis of narcotics, depressants, stimulants and hallucinogens. Also, the influence of physicochemical properties upon the pharmacological effects of drug-receptor interactions. Historical, forensic and socio-economic implications associated with drug abuse will also be reviewed. Three lecture/lab hours. Lab/Class fee will be assessed.

FRSC 650 FORENSIC MICROSCOPY (3)

Instruction and laboratory practice in the methods of collecting, handling, preparing, identifying and comparing items of trace and biological evidence and utilization of the stereomicroscope, microspectrophotometer, scanning electron microscope, polarizing microscope, compound microscope, fluorescent microscope, hot stage microscope and comparision microscope. Advanced elective intended for MSFS students. Open to MS Forensic Science students only. Prerequisite: department consent.
FRSC 660 DEATH ANALYSIS IN FORENSIC SCIENCE (3)
The forensic examination of the deceased through a multifaceted approach of different forensic specialties. Topics include identifying the deceased, determining the cause and manner of death, and establishing the post mortem interval. Advanced elective for MSFS students.

FRSC 670 FORENSIC ANALYTICAL METHODS (3)
Analytical instrumentation used for analysis of drugs, arson, explosives, and trace evidence. Laboratory work includes sample preparation, handling, analysis and data interpretation for samples from simulated crime scenes. Use and conformity to standard protocols, quality assurance, and quality control methods, statistical methods for calibration and analysis of data. Four laboratory/lecture hours. Lab/Class fee will be assessed.

FRSC 690 FORENSIC TOXICOLOGY (3)
Provides in-depth knowledge of forensic, analytical chemistry and toxicology principles as they pertain to the commonly encountered abused and toxic substances. Includes modules in various topics, i.e. alcohol and volatiles, legal and illegal drug effects on human performance and postmortem toxicology. A series of case studies will be used to reinforce concepts and to combine individual topics covered in each module. Prerequisite: FRSC 602 may be taken concurrently.

FRSC 695 SPECIAL TOPICS IN FORENSIC SCIENCE (3)
In-depth study in a selected area pertaining to forensic science. Can be taken up to four times for a total of 12 units provided a different topic is taken each time.

FRSC 787 GRADUATE INTERNSHIP IN FORENSIC SCIENCE (3)
Supervised laboratory experience relating forensic theory and practice. The internship will be carried out in a commercial, city, county or federal laboratory. May be repeated for a maximum of 6 credits. This course can only be taken by Forensic Science Masters students. Special permit required for this course.

FRSC 797 GRADUATE SEMINAR FOR FORENSIC SCIENCE (1)
Student reports and discussion dealing with forensic research. Students are also expected to attend seminars pertaining to forensic and other natural sciences given on the university campus throughout their program. This course is for students enrolled in MS Forensic Science Program. Prerequisites: enrollment in Forensic Science graduate program and Permission of the Program Director.

FRSC 880 RESEARCH PROJECT IN FORENSIC SCIENCE (3)
Laboratory research of a matter of forensic significance under the direction of a 3 member research committee headed by a faculty mentor at Towson University. Before beginning the research project, students must present their proposals for approval by the faculty mentor and research committee. The project can be carried out on campus, or at a cooperating forensic laboratory under the joint supervision of a faculty member and a cooperating forensic scientist. Substantial written report and oral presentation required. The oral presentation and defense of the project will be evaluated by the students research committee and graded by the faculty mentor. This course can only be taken by Forensic Science Masters students. A special permit is required to register for this course. Prerequisites: 18 units of graduate forensic science courses. Lab/Class fee will be assessed.

FRSC 897 FRSC THESIS (6)
Original investigation to be completed under the supervision of one or more faculty members. Credit is granted after thesis is accepted. Prerequisite: Permit from department.

FRSC 898 FRSC THESIS (3)
The previous course, FRSC 897, taken over two consecutive semesters.

FRSC 899 THESIS CONTINUUM (1)
Continuum of graduate thesis research project for students who did not complete the project work during the regular project course registration. Prerequisite: FRSC 897.